Application Note

What Voltage and Current is Applied to the Unknown?

When a device is tested with a Digibridge it is not uncommon to need to know what voltage is across the device or what current is passed through it. To compute the actual voltage or current it is necessary to understand the output configuration of the instrument. The test voltage is applied to the DUT with a range resistor $\left(\mathrm{R}_{\mathrm{S}}\right)$ in series with it. The value of R_{S} is known and varies as the impedance of the DUT changes. Table 1 lists the values of R_{S} for the QuadTech 1600 Series Digibridges.

Table 1: Range Resistor Values of 1659, 1692, 1689, 1693 Digibridges

Range \#	R_{S}	Auto Z Range
1	$102.4 \mathrm{k} \Omega$	$>25 \mathrm{k} \Omega$
2	$6.4 \mathrm{k} \Omega$	$1.6 \mathrm{k} \Omega-25 \mathrm{k} \Omega$
3	400Ω	$100 \Omega-1.6 \mathrm{k} \Omega$
4	25Ω	$<100 \Omega$
Constant Voltage	25Ω	any

With known values of $\mathrm{V}_{\text {PROG }}, \mathrm{R}_{\mathrm{s}}$, and $\mathrm{Z}_{\text {DUT }}$, we can calculate the values of $\mathrm{V}_{\text {DUT }}$ and $\mathrm{I}_{\text {DUT }} u$ using Ohms Law and derivative equations as illustrated in Figure 1.

$$
\begin{array}{rlrl}
X_{\text {DUT }} & =2 \pi f L & Z_{T O T}=\sqrt{\left(X_{D U T}\right)^{2}+\left(R_{D U T}+R_{S}\right)^{2}} \quad V_{P R O G}=I_{\text {DUT }} \quad\left(Z_{\text {DUT }}\right) \\
& =\frac{1}{2 \pi f C} & & Z_{\text {DUT }}=\sqrt{\left(X_{D U T}\right)^{2}+\left(R_{\text {DUT }}\right)^{2}} \\
R_{\text {DUT }} & =X_{C U T}=\frac{V_{P R O G}}{Z_{T O T}} \\
& =\frac{X_{L}}{Q} & V_{D U T}=\frac{Z_{\text {DUT }}}{Z_{\text {TOT }}}\left(V_{\text {PROG }}\right)
\end{array}
$$

Figure 1: Formulas for Calculating DUT Voltage, Current \& Impedance
Prior to determining the voltage across the DUT or the current through the DUT, one must first establish the test voltage and frequency. The source resistance is then established based on the resistance range used by the test instrument. A capacitor is used as an example to illustrate the calculation of the voltage across the DUT.

Calculate the voltage across the DUT

Figure 2: Constant Voltage Mode with 1600 Series Digibridge

Device Under Test:

$$
\begin{aligned}
& \text { DUT }=2 \mathrm{uF} \text { capacitor } \\
& \mathrm{D}=0.1 \\
& \text { Test Voltage }=\mathrm{VPROG}=1 \mathrm{~V} \\
& \text { Test Frequency }=\mathrm{f}=1 \mathrm{kHz} \\
& 1693 \text { Resistance Range }=\text { range } 4 \\
& \text { Source Resistance }=\mathrm{R}_{\mathrm{S}}=25 \Omega
\end{aligned}
$$

Given the above values for the capacitor under test and the test parameters, we can calculate X_{C}, $\mathrm{R}_{\mathrm{C}}, \mathrm{Z}_{\mathrm{Dut}}$ and $\mathrm{Z}_{\text {тот }}$. Once we have these values, we can calculate $\mathrm{V}_{\mathrm{Dut}}$ using the equations in Figure 1.

$$
\begin{aligned}
& X_{\text {DUT }}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi 1 \mathrm{kHz2LF}=79.57 \Omega} \\
& \mathrm{R}_{\text {DUT }}=\mathrm{X}_{\mathrm{C}} \mathrm{D}=(79.57 \Omega)(0.1)=7.957 \Omega \\
& Z_{\text {DUT }}=\sqrt{\left(\mathrm{X}_{\text {DUT }}\right)^{2}+\left(\mathrm{R}_{\text {DUT }}\right)^{2}}=\sqrt{(79.57 \Omega)^{2}+(7.95 \Omega)^{2}}=\sqrt{6394.58 \Omega}=79.96 \Omega \\
& Z_{\text {TOT }}=\sqrt{\left(X_{\text {DUT }}\right)^{2}+\left(R_{\text {DUT }}+R_{S}\right)^{2}}=\sqrt{(79.57 \Omega)^{2}+(7.95 \Omega+25 \Omega)^{2}}=\sqrt{7417.80 \Omega}=86.12 \Omega \\
& V_{\text {DUT }}=\frac{Z_{\text {DUT }}}{Z_{\text {TOT }}}\left(V_{\text {PROG }}\right)=\frac{79.96 \Omega}{86.12 \Omega}(1 \mathrm{~V})=0.928 \mathrm{~V}
\end{aligned}
$$

After calculating the voltage across the DUT $(0.928 \mathrm{~V})$, we calculate the current running through the DUT using Ohm's Law: V=RI or $\mathrm{I}=\mathrm{V} / \mathrm{Z} . \mathrm{I}_{\text {Dut }}=\mathrm{V}_{\mathrm{DUT}} / \mathrm{Z}_{\mathrm{DUT}}=(0.928 \mathrm{~V}) /(79.96 \Omega)=0.0116 \mathrm{~A}$ $=11.6 \mathrm{~mA}$.

Digibridge Voltage \& Current Ranges

Figures 3 and 4 present graphical illustrations of the voltage across a DUT (for resistors or low loss capacitors and inductors) and the maximum current of the Digibridge instrument at 1.275 V . Actual voltage and current values depend on the device being tested (DUT).

Digibridge DUT Voltage Graph
(Resistors or low loss C's and L's)

Figure 3: 1600 Series Digibridge Voltage versus Impedance

Maximum Digibridge Current
 (1689/1693 @ 1.275 volts)
 25 ohms (Constant Voltage)

Figure 4: 1600 Series Digibridge Current versus Impedance
For complete product specifications on the classic 1600 Series Digibridge instruments or any of QuadTech's products, visit us at http://www.quadtech.com/products. Call us at 1-800-253-1230 or email your questions to info@quadtech.com.

The information presented here is subject to change and is intended for general information only
©QuadTech, Incorporated
Telephone: 1- 800-253-1230, Website: http://www.quadtech.com
Printed in U.S.A.
P/N 035050/A3

